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ON POINT-TRANSITIVE AFFINE PLANES

BY
WILLIAM M. KANTOR'

ABSTRACT

Finite affine planes are constructed admitting nonabelian sharply point-
transitive collineation groups. These planes are of two sorts: dual translation
planes, and planes of type 1I.1 derived from them.

1. Introduction

In [5], Ostrom used the dual Tits-Liineburg planes in order to construct affine
planes of type IL.1. In this note, we will construct translation planes, point-
transitive (affine) dual translation planes, and point-transitive affine planes of
type I1.1. The derivation process involved in the construction of the last of these
planes is a standard, straightforward imitation of Ostrom’s approach. On the
other hand, the translation planes we use behave differently from those used by
Ostrom. In §2, a construction is given for translation planes of order ¢* having
kernel GF(q) and admitting an abelian group of order ¢q° which has an orbit of
length ¢° at infinity but contains only ¢ elations. This abelian group is
elementary abelian if and only if q is odd. Our construction was motivated by
examples in [3, (4.5)]; these and other examples are presented in §§3, 5.

The corresponding dual translation planes and derived dual translation planes
of type IL.1 appear in §4. One plane of each sort is obtained whenever q >2 and
q =2 (mod 3), and one more whenever ¢ = 5° > 5. The full collineation group of
each of these planes is determined. This group is transitive on the ¢* points but
has no line-orbit of length q*. In particular, the corresponding projective planes are
not self-dual, and none is isomorphic to the dual of any other. Consequently, still
further planes of type I1.1 arise by duality. (The same proofs apply to the derived
dual Tits-Liineburg planes, the determination of whose collineation groups was
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left open in Ostrom [5]. Since these groups again act differently on the planes
and their duals, duality produces still further planes of type I1.1.)

The planes studied in §4 are point-transitive affine planes which are not
translation planes. Finite planes with these properties seem to be rare (cf.
Dembowski [1, pp. 183-184, 214-215}]). Moreover, each of these planes admits a
sharply point-transitive group.

I am grateful to Jill Yaqub for directing my attention to Johnson and Piper [2].
Those authors obtained planes of type II.1 by deriving the duals of translation
planes of order q° constructed by Walker [6] whenever g =5 (mod 6). It is easy
to check that the planes constructed in those papers are precisely the planes & ()
and &/ (1) considered here for which q is odd and ! =0.

All of our proofs are straightforward except, perhaps, at the end of §4. Most of
the prerequisites can be found on pp. 132, 226 and 249-251 of Dembowski [1].

2. The planes (1)
Set K = GF(q), where q >3 and q = p° is a power of a prime p# 3.

DeriNiTION. A function | : K — K is likeable if it satisfies the conditions:
(i) I(t+tu)=1()+1(u) for all t,u €K, and
(i) if w>=¢*u—3t*+d(t) then t=u =0.

Throughout this section, ! will denote a likeable function. Property (i) and a
calculation yield the following result.

LEMMA 2.1. Let f(t,u)=tu —3t>+1(t). Then the q° matrices
f(t,u)

t u
M(t,u) = 1 t u
0 1
0 0 1

(=R e R

with t,u € K form an abelian group P(l). If q is odd then P(l) is elementary
abelian. If p =2 then P(l) is the direct product of e cyclic groups of order 4.

DerFINITION.  Let 3(/) consist of the following 2-dimensional subspaces of K*:
0x0xKxK
(K x K x0x0)M, M e P().

ProposITION 2.2. 3(1) is a spread.
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Proor. It suffices to check that (K X K Xx0X0)N(K X K X0X0)M(t,u)=0
when ¢ or u is nonzero. But this requires that the equations
xu+yt=0
xf(t,u)+yu=0

have only the trivial solution x =y = 0, and hence that 4’ — (f(t,u) # 0. This is
guaranteed by the definition of likeability.

ProposiTION 2.3. (i) P(l) has an orbit of length q° on the line L. at infinity.
(i) The elations in P(l) are the matrices of the form M(0,u).

Proor. The first assertion is obvious, and the second is easily checked. (In
fact, if ¢#0 then M(t, u) fixes only g vectors.)

THEOREM 2.4. (1) determines a nondesarguesian translation plane ().
Proor. This is clear by (2.3).

CoRrOLLARY 2.5. The group N(I)=GL(4,q)sq) fixes the point © common to
L. and 0x0xK XK.

Lemma 2.6. P(l) is a Sylow p-subgroup of N(l).

Proor. Some Sylow p-subgroup of N(I) has the form P(l)B, where B fixes
both0x0x K x K and K X K x 0 x0. Then B consists of matrices of the form

1 a 0 0
0 1 0 0
0 0 1 b
0O 0 0 1

and a simple calculation completes the proof.

THeEOREM 2.7. The planes (1) and (') are isomorphic if and only if
I')=10¢"y )Yy or p=2 and I'(t)=10""y™ )Yy’ +1B*+t’B for some
o € AutK, some y EK*, some B €K, and all t € K.

Proor. Let S €TL(4,q) send X(I) to 2(I'). We may assume that S fixes
0Xx0x K xK and K XK x0x0 (by (2.3i)) and conjugates P(l) to P(l') (by
(2.6)). Then S has the form vS = v°S’ for some o € Aut K and some matrix §'
of the form

B
§' =

S O O R
o Q © O

Y
0
0

”2 W e e
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with a, B, v, &', B', vy EK.

Define [“ by 1°(t)=1(t°"")". Since P(I)" = P(I"), we can replace I by I” in
order to have § = §".

Since § sends elations of &/ (I) to elations of & (I'), (2.3ii)) and a simple
calculation yield that

c(a ﬂ)=(a’ ‘6,’) for some ¢ € K*.
0 v 0 v

By replacing T by a ™' T we may assume that @ = 1. Computing S "M (1, u)S, we
find that ty=cty”', c(u—tBy )=c(u+By™") and f'(ty,cu+ctBy )=
c{f(t,u)~—tB’y"} for all t,u. The theorem now follows easily.

CoroLLARY 2.8. Nyoy(P(1))/P(I)K* is isomorphic to the group of all matrices

1 g 0 0

0 v 0 0

0 0 ¥y B
0 0 O ¥

such that [(t)=1(ry )y  and B =0, or [(t) = 1(ty )y’ +1B° + ’B and p =2, for
allt€K.

LEMMA 2.9. (i) P(!) fixes each line 0X0x K x K +(0,0,0,d) of the desar-
guesian Baer subplane of,=0Xx K XX K.

(ii) oy has q images under P(l).

(i) The group P(1)K™* generated by P(l) and the dilatations with center 0 has
3 orbits of lines parallel to 0x0X K X K, of lengths 1, ¢ —1 and q° —q.

Proor. The required calculations are straightforward.

3. Example of likeable functions
In this section we will present two examples of likeable functions.

LeEMMA 3.1. An additive function |: K — K is likeable if and only if the
equation

x*—x+i-l(a)a’=0
has no solution for x € K and a € K*. In particular, if q is odd then l is likeable if
and only if I(a)a™—1/12 is a nonsquare for all a € K*.

PrROOF. Set a =t and x = u/a’ in the definition of likeability.
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ExampLE 1. The constant function ! =0 is likeable if and only if ¢ =2
(mod 3). In §5 we will see that &/(I) arose in [3]. Note that (by (2.8) or a simple
calculation) diag(l,r,r’,r’) € Aut A(!) for each r € K*.

ExampLE II. Let ¢ =5">5 and fix a nonsquare k €K. Then [({)=
ke*+ k7't is likeable (since I[(¢)t°—1/12=k 't *(kt*+1) and *# — k™).
Different nonsquares produce isomorphic planes. By (2.7), these planes are
different from those of Example 1.

RemARks. (1) If g is even and g =2 (mod 3), let T : K — GF(2) be the trace
map. ThenKer T ={y €K I y =x’+x for some x € K}and T(1) = 1. Thus, I(t)
is likeable if and only if T(I(¢)/t’)=0 for all t# 0. Consequently, the set of
likeable functions is closed under addition.

(2) If g =1 (mod 3) then x*+ x +31 =0 has a root, and hence Ker! = 0.

4. Dual and derived dual planes

Let o (I) be asin §2. Let V be the translation group of #(I) (so V = K*), and
let V() consist of those translations whose center ® is the parallel class of
0x0x K x K. Note that | VP(I)| = ¢° and | V(«)P(I)| = q*. Since P(l) is transi-
tive on L. —{}, while V(=) is transitive on the affine lines through each point of
L.—{»}, V()P(l) is transitive on the lines not containing c.

Let o (1)* denote the projective plane dual to the projective closure of & (1).
We will use L¥ =0 as its line at infinity in order to regard s/ (I)* as an affine
plane.

PROPOSITION 4.1. P(I)V() is a nonabelian group sharply transitive on the
affine points of A (1)*; it contains exactly q° translations. Moreover, s{(1)* is not a
translation plane.

Proor. This is straightforward. (Note that the center of P(I)V(») is
{M(O,u)|u €K}

Let 4, be as in (2.9), and let £ consist of L.. and the lines in (2.9i). Then & (I)*
is derivable (Ostrom [4, theorem 9]), and £* is a derivation set. The derived
plane (I has the same points as the affine plane o (/)*; its lines are those of
A (1)* not meeting £*, together with all Baer subplanes of &/ (/)* containing £*.

THEOREM 4.2. The plane (1) has type 11.1. It admits a nonabelian sharply
point-transitive group containing exactly q* translations.

Proor. Clearly, P(I)V(®) acts sharply transitively, and its ¢° translations
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appearing in (4.1) constitute all translations of #/(!). The q° translations fixing

% produce one (c, L)-transitivity (where L = L. is the new line at infinity,
while ¢ is the parallel class ' of the new line # ). As in Ostrom [5], we must
assume that &/ (I} is a dual translation plane and derive a contradiction.

There are q° elations with center ' of the (alleged) dual translation plane
A (1) fixing a Baer subplane of &/ (!)' which used to be a point of (/) on L..
Only g of these elations are translations, but all are inherited by the derived
plane s (1)* of & (). Thus, there is a group of g collineations of & (I)* fixing a
Baer subplane pointwise. By (2.6), no such group exists.

THEOREM 4.3. (i) Aut A(lY is inherited from Aut A (I)*.

(i) If () =) then A (L) = A(L).

(iii) (1) is not isomorphic to a derived dual Tits—Liineburg plane or a derived
Hughes plane.

ProoF. Clearly, (i) implies (iii). Also, if (i) holds then Aut &/ (I} has a unique
orbit on L. of length q (by (2.9)), which together with «’ is a derivation set
producing & (I)*. Thus, (i) also implies (i), and we only need to verify (i).

By (2.6) a Sylow p-subgroup of Aut #/(I)* has order gq°¢’ with e’ I e; and this
has a subgroup Q, of order gq’¢’ acting on #(!). Clearly, Q,= P(l)V(*)B,
where B is a group of q elations of & (I)* which fix both 0 and & §. The axis L of
B becomes a Baer subplane (also called L) of #(l), and B is a group of
collineations of &/(l) fixing this subplane pointwise.

Any collineation of &/ (I) fixing L must fix its set of points at infinity. The
latter points form the derivation set D for & (l) such that the corresponding
derived plane is (I)*. Thus, (Aut(l)). = Autof(l)*. In particular, the
centralizer of B lies in Aut sf(I)*.

If Aut A () fixes D then (4.3) holds, so assume that D is moved. By (2.9), we
already know orbits of lengths 1, q, ¢>~¢q on L.. Thus, Aut s{(l) is transitive
on L.—{=}. Its Sylow p-subgroups then have order =Zgq%’'. If B<
Q € Syl, (Aut L (I)), then |[Q |z g¢’.

Let 1#2z € Z(Q). If z €EB then Q = Aut(¢)*. Thus, z& B, and (2, B) =
Aut S(I)*. Then z fixes the line L of #/(I)* and centralizes the q elations in B.
Since (z, B) fixes 0 and &/ it cannot be faithful on &}%. By (2.6), (z, B) = B,
which is ridiculous.

REMARK. The same argument settles a question left open in Ostrom [5]: the
automorphism group of a derived Tits—Liineburg plane is precisely the inherited
group.
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S. The planes with | =0

In this section we will show that the planes & (I) with [ identically 0 are the
same as those appearing in [3, (4.5)].

Let ¢ =2 (mod 3). Set F = GF(q*), K = GF(q), @ =a” and T(a)=a + a for
a € F. Form the K-space

V={apB+K, vbc)laByEFT(y)=0;bc€EK}

Equip V with the quadratic form
Q(a,B+K,y,b,c)=a’*+aa +a’+ T(By)+ bc.

Then V is an Q°(6,q) space. A spread in K* corresponds (under the Klein
correspondence) to a set () of g+ 1 singular points of V, no two of which are
perpendicular. The set Q in [3, (4.5)] consists of the points
(0,0,0,0,1)
{p,pa + K, 0,1, pp)

where T(g)=0=T(p)+ 05.
ProPOSITION S5.1.  The translation plane determined by Q) is s{ (1) where | = 0.

PROOF. Let w EF and 0w’ =1# w. Set § =1+ 2w, so T(8)=0. Write
(a0, B+K,v,b,c)=(x0 +5ue, — yo + K, jab, e, c)

with x,u, y,a,d,e € K. Note that
O (xw +3iud, — yo + K, a8, e, ¢) = ixu +iya +ice.
Let a,p € F with T(c)=0= T(p)+ oG. Write o = a6 and p = xo +3iua, so
0= —x —iu +ia’and p& =3a(x +iu) (mod K). Then Q) consists of the points
(0,0,0,0,1)
((a®—tu)w +iud,3a’w + K,3a6,1,Ga’> —uy — Ga’ — w)u + u?)
for a,u € K.

Now identify (xw +3u®, — yo + K, a6, e, ¢) with the vector (e, a, u, x, y, ¢} in
K°® and replace Q by 3Q. Then Q(e,a,u,x,y,c)=ec+ay+ux, while Q
consists of the points

(0,0,0,0,0,1)

4
(1,a,u,a*—u, —3a*,u’—a’u+ia").

Under the Klein correspondence, (1,4, u, x,y, — xu — ya) corresponds to the
2-space {(1,0, —x,y),(0,1, a,u)). This completes the proof of (5.1).
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Appendix: Coordinates

Coordinates for & (I) were not needed in our arguments. However, in this
section we will briefly describe a coordinatization of these planes.
Define the following products on K’:

(aaﬁ)*(t’u):(a(u —t2)+Bt,a(—%r3+l(t))+Bu)

(Bt,Bu) ifa =0
(@, B)o(tu)=
(aut+t+a 'Bta (=3’ + (1) +a 'B(Bu+1’+a 'Bt))
if a#0.

Write (a,b,c,d) = ((a,b),(c,d)) = [(a, c),(b,d)]. Then the lines of A (I) are the
set of points (X, Y) € (K’Y of the form X = C or Y = X * M + B, while those of
A(1)* have the form X = C or Y = M # X + B. The lines of s£{l) are the sets of
points [X, Y] of the form X =C or Y=M-X+C.

The product M ° X has been normalized so that (m, n)° (0, y) = (my, ny) for
all m,n,y. Note that Mo(X +(0,y))=MoX+Mo(0,y). It follows that the
group T of q* translations of #(!) consists of all mappings [X, Y]—[X, Y]+
[(0,a),C]. Such a translation has direction M if and only if C = M (0, a), in
which case we will call it 7[M;a]. Let 7(C):[X, Y]—=[X, Y]+][0, C}, so 7(K?)
is the group of (=, L \)-elations.

Let MAM' . If a+a’#0 then

7[M;alr[M';a'l=7[M+(a+a')"'a'(M'-M);a +a'],

while 7[M;a]r[M’; —a]= 7(a(M — M")). Thus, (r[M; K|, 7[M’; K]) contains
the q groups 7[M + A(M'— M); K], A €K, along with 7(K(M — M")). Conse-
quently, each orbit of this group consists of the q° points of a Baer subplane of
Al).
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